O.P.Code: 23HS0838 **R23** H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech. II Year II Semester Regular Examinations July/August-2025

PROBABILITY & STATISTICS

			(Commo					I, CSM, CAD)			
Tim	۱6۰	3 Hours	(Commoi	n to CS.	ii, CSI	z, CIC, C	CC, CA	i, CSNi, CAD)	Max.	Mark	70
1 111		Jilouis				DADT			Max.	Walb	is: 70
			()	A marron	all +ha	PART	_	- 20 Montes)			
1		The weights						= 20 Marks)	CO1	τ.	23/
1	a							re given below		LZ	2M
			9,64 kgs.	Find ar	rithmeti	c mean	and med	dian of weight of			
		competitors.				_					
	b	Define Skewn							CO ₁	L1	2M
	c	State the axion			-	•			CO ₂	L1	2M
	d	The sample sp	pace is $S =$	{1, 2, í	3, 4, 5,	6}. let <i>A</i>	be the	event that an even	CO ₂	L2	2M
		number turns	up and le	et B be	the ev	ent that	a numb	per divisible by 3			
		occurs. Find F	$P(A \cup B)$ ar	nd P(A)	$\cap B$).						
	e	If X is the bin	omial varia	ate with	n param	neters n =	= 15 and	p = 0.2. Find the	CO ₃	L2	2M
		variance of X			1						
	f	If the variance	e of a Poiss	on vari	ate is 3.	Find P	1 < X < 1	(4)	CO ₃	L2	2M
	g	Define type-I)	CO4	L1	2M
	h	State the confi				formula	for mea	n	CO4	L1	2M
	i	Define t-test for			mation	i ioiiiiaia	. 101 11100		CO5	L1	2M
	i	Define t-test for	_		io mear	10			CO5	L1	2M
	J	Define t-test is	or different	cc or tw	vo ilicai	PART	D		COS	LI	21V1
				(Anciro	r all Fig	-		50 Marks)			
				(Allawe	all I'l			SU Marks)			
		G 1 1 .		001		UNIT					
2		Calculate cor							CO ₁	L3	10M
			15 12	17	13	16	24 1	4 22 20			
		Y 30 4	42 45	46	33	34	40 3	5 39 38			
						OR					
3		Find the two r	egression e	equation	is from	the follo	wing da	ta:	CO ₁	L3	10M
		X 10	25	34	42	37	35	36 45			
		Y 56	64	63	58	73	75	82 77			
						UNIT	TI				
4		A manufactur	ing firm er	mnlove	three o			or the design and	CO2	T 2	10M
•								I three are used at	COZ	L3	10141
			_	-							
								%, 20%, and 50%			
								rent for the three			
		procedures as	follows P	$(D P_1)$:	= 0.01,	$P(D P_2)$) = 0.03,	$P(D P_3) = 0.02$.			
		If a random	product w	vas obs	erved	and four	nd to b	e defective, find			
			-								
		$P(P_{\rm I} D), P(D)$	$r_2 D$) and	$P(P_3 L$	٠)٠						
						OR					
5		A continuous	random va	riable l	nas the	probabil	ity densi	ity function given	CO ₂	L5	10M
		(h	$(1-r^2)\cdot 0$	/r/1							
		by $f(x) = \begin{cases} x \\ 1 \end{cases}$	(1-x),0	\ \ \ \ 1	Deter	mine i)	Constan	t k ii) Mean iii)			
			0; otherw	ise				t k ii) Mean iii)			
		Variance and i									
		. mimico una i	, Sumum	a ac 110							

UNIT-III

6 Fit a Binomial distribution to the following frequency distribution:

CO3 L3 10M

x	0	1	2	3	4	5
f	2	14	20	34	22	8

OR

In a sample of 1000 cases, the mean of certain test is 14 and standard deviation is 2.5. Assuming the distribution to be normal find (i) How many students score between 12 and 15 (ii) How many students score above 18? (iii) How many students score below 8?

CO4 L3 10M

6M

4M

10M

UNIT-IV

- 8 a Due to the decrease in interest rates, the First Citizens Bank received a lot CO5 of mortgage applications. A recent sample of 50 mortgage loans resulted in an average loan amount of Rs. 257,300. Assume a population standard deviation of Rs. 25,000. For the next customer who fills out a mortgage application, find a 95% prediction interval for the loan amount.
 - **b** A sample of 400 items is taken from a population whose standard **CO5** deviation is 10. The mean of the sample is 40. Test whether the sample has come from a population with mean 38.

OR

Samples of students were drawn from two universities and from their weights in kilograms, mean and standard deviations are calculated and shown below. Make a large sample test to significance of the difference between the mean

11 4110 1110 1111			
	Mean	S.D	Size of the sample
University A	55	10	400
University B	57	15	100

UNIT-V

To examine the hypothesis that the husbands are more intelligent than the wives, an investigator took a sample of 10 couples and administered them a test which measures the I.Q. The results are as follows:

he	CO ₆	L4	10M
m			

Husbands	117	105	97	105	123	109	86	78	103	107
Wives	106	98	87	104	116	95	90	69	108	85

Test the hypothesis with a reasonable test at the level of significant of 0.05 and also calculate F-test.

OR

The following table gives the classification of 100 workers according to gender and nature of work. Test whether the nature of work is independent of the gender of the worker ($\psi^2 = 3.84$ at 1d.f).

to	CO ₆	L4	10M
is			

	Stable	Unstable	Total
Males	40	20	60
Females	10	30	40
Total	50	50	100

*** END ***